41 research outputs found

    Investigating Catastrophic Overfitting in Fast Adversarial Training: A Self-fitting Perspective

    Full text link
    Although fast adversarial training provides an efficient approach for building robust networks, it may suffer from a serious problem known as catastrophic overfitting (CO), where multi-step robust accuracy suddenly collapses to zero. In this paper, we for the first time decouple single-step adversarial examples into data-information and self-information, which reveals an interesting phenomenon called "self-fitting". Self-fitting, i.e., the network learns the self-information embedded in single-step perturbations, naturally leads to the occurrence of CO. When self-fitting occurs, the network experiences an obvious "channel differentiation" phenomenon that some convolution channels accounting for recognizing self-information become dominant, while others for data-information are suppressed. In this way, the network can only recognize images with sufficient self-information and loses generalization ability to other types of data. Based on self-fitting, we provide new insights into the existing methods to mitigate CO and extend CO to multi-step adversarial training. Our findings reveal a self-learning mechanism in adversarial training and open up new perspectives for suppressing different kinds of information to mitigate CO.Comment: Comment: The camera-ready version (accepted at CVPR Workshop of Adversarial Machine Learning on Computer Vision: Art of Robustness, 2023

    ECS: Efficient Communication Scheduling for Underwater Sensor Networks

    Get PDF
    TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs), because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS) for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols

    Wide‐bandwidth nanocomposite‐sensor integrated smart mask for tracking multiphase respiratory activities

    Get PDF
    Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a “smart mask” to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 ”m), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.e., capable of detecting various respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects test the smart mask in recording their respiratory activities. Machine/deep learning methods, i.e., support vector machine and convolutional neural networks, are used to recognize these activities, which show average macro-recalls of ≈95% in both individual and generalized models. With rich high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs can be mapped while speaking words can be identified, demonstrating that the smart mask can be applicable as a daily wearable Internet of Things (IoT) device for respiratory disease identification, voice interaction tool, etc. in the future. This work bridges the technological gap between ultra-lightweight but high-frequency response sensor material fabrication, signal transduction and processing, and machining/deep learning to demonstrate a wearable device for potential applications in continual health monitoring in daily life

    Formation of Yolk–Shell MoS<sub>2</sub>@void@Aluminosilica Microspheres with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction

    No full text
    The development of low-cost electrode materials with enhanced activity and favorable durability for hydrogen evolution reactions (HERs) is a great challenge. MoS2 is an effective electrocatalyst with a unique layered structure. In addition, aluminosilica shells can not only provide more hydroxyl groups but also improve the durability of the catalyst as a protective shell. Herein, we have designed a hard-template route to synthesize porous yolk–shell MoS2@void@Aluminosilica microspheres in a NaAlO2 solution. The alkaline solution can directly etch silica (SiO2) hard templates on the surface of MoS2 microspheres and form a porous aluminosilica outer shell. The electrocatalytic results confirm that the MoS2@void@Aluminosilica microspheres exhibit higher electrocatalytic activity for HERs with lower overpotential (104 mV at the current density of −10 mA cm−2) and greater stability than MoS2 microspheres. The superior electrocatalytic activity of MoS2@void@Aluminosilica microspheres is attributed to the unique structure of the yolk@void@shell geometric construction, the protection of the aluminosilica shell, and the greater number of active sites offered by their nanosheet subunits. The design of a unique structure and new protection strategy may set up a new method for preparing other excellent HER electrocatalytic materials

    Design and Studies on a Low-Frequency Truss-Based Compressive-Mode Piezoelectric Energy Harvester

    No full text

    Free-Radical-Promoted Site-Selective C–H Silylation of Arenes by Using Hydrosilanes

    No full text
    A free-radical-promoted aryl/heteroaryl C–H silylation using hydrosilane was developed. This cross-dehydrogenative silylation enables both electron-rich and electron-poor aromatics to afford the desired arylsilanes in unique selectivity. A “<i>para</i>-selectivity” was observed by examination of over 54 examples. This exceptional orientation is quite different from that in Friedel–Crafts C–H silylation or transition-metal-catalyzed dehydrogenative silylation

    The complete mitochondrial genome sequence of snake mackerels Paradiplospinus antarcticus (Scombroidei, Gempylidae)

    No full text
    For the first time, we illuminate the complete mitochondrial genome (mitogenome) sequence of the Paradiplospinus antarcticus, which is 16,988 bp in size and contains 13 protein-coding (PCGs), 2 rRNA genes, 22 tRNA genes, and one control region.The base composition of the mitogenome is 26.08% A, 26.77% T, 28.46% C and 18.69% G. Here, we selected 11 genera of species from the mostly monotypic snake mackerel family, including representative Antarctic Paradiplospinus antarcticus that have been identified, and constructed phylogenetic trees to better study the snake mackerel family

    Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies

    No full text
    Abstract The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105  S  m−1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m−3). Additionally, the dynamic interactions within our solder’s surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics

    A Free-Radical-Promoted Site-Specific Cross-Dehydrogenative-Coupling of <i>N</i>‑Heterocycles with Fluorinated Alcohols

    No full text
    A C–C formation of an electron-rich <i>N</i>-heterocycle with fluorinated alcohol is developed. Through this radical-triggered cross-dehydrogenative coupling strategy, a wide range of useful building blocks such as C3 hydroxyfluoroalkylated indoles and pyrroles can be site-specifically synthesized. Mechanistic studies indicate a single-electron-transfer initiated radical cycle would be involved
    corecore